Penn Arts & Sciences Logo

Vision Seminar: Michael Berry

Monday, October 16, 2017 - 12:15pm

Barchi Library (140 John Morgan Building)

Michael Berry
Princeton Neuroscience Institute

Predictive Coding of Novel versus Familiar Stimuli in the Primary Visual Cortex

To explore theories of predictive coding, we presented mice with repeated sequences of images with novel images sparsely substituted. Under these conditions, mice could be rapidly trained to lick in response to a novel image, demonstrating a high level of performance on the first day of testing. Using 2-photon calcium imaging to record from layer 2/3 neurons in the primary visual cortex, we found that novel images evoked excess activity in the majority of neurons. When a new stimulus sequence was repeatedly presented, a majority of neurons had similarly elevated activity for the first few presentations, which then decayed to almost zero activity. The decay time of these transient responses was not fixed, but instead scaled with the length of the stimulus sequence. However at the same time, we also found a small fraction of the neurons within the population (~2%) that continued to respond strongly and periodically to the repeated stimulus. Decoding analysis demonstrated that both the transient and sustained responses encoded information about stimulus identity. We conclude that the layer 2/3 population uses a two-channel predictive code: a dense transient code for novel stimuli and a sparse sustained code for familiar stimuli. These results extend and unify existing theories about the nature of predictive neural codes.